

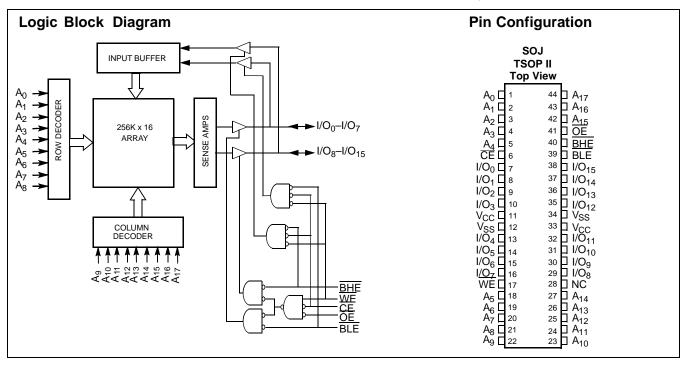
CY7C1041BN

256K x 16 Static RAM

Features

- Temperature Ranges
 - Commercial: 0°C to 70°C
 - Industrial: –40°C to 85°C
 - Automotive-A: –40°C to 85°C
- High speed
 - t_{AA} = 15 ns
- · Low active power
 - 1540 mW (max.)
- Low CMOS standby power (L version)
- 2.75 mW (max.)
- + 2.0V Data Retention (400 μW at 2.0V retention)
- · Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with CE and OE features
- Available in Pb-free and non Pb-free 44-pin TSOP II and molded 44-pin (400-Mil) SOJ packages

Functional Description


The CY7C1041BN is a high-performance CMOS static RAM organized as 262,144 words by 16 bits.

<u>Writing</u> to the device is <u>accomplished</u> by taking Chip Enable (\underline{CE}) and Write Enable (WE) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₀ through I/O₇), is written into the location specified <u>on the</u> address pins (A₀ through A₁₇). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A₀ through A₁₇).

Reading from the device is accomplished by taking Chip Enable (CE) and Output Enable (OE) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins will appear on I/O_0 to I/O_7 . If Byte High Enable (BHE) is LOW, then data from memory will appear on I/O_8 to I/O_{15} . See the truth table at the back of this data sheet for a complete description of read and write modes.

The input/output pins $(I/O_0 \text{ through } I/O_{15})$ are placed in <u>a</u> high-impedance state when the device is de<u>selected (CE</u> HIGH), the outputs are disabled (OE HIGH), the BHE and BLE are disabled (BHE, BLE HIGH), or during a write operation (CE LOW, and WE LOW).

The CY7C1041BN is available in a standard 44-pin 400-mil-wide body width SOJ and 44-pin TSOP II package with center power and ground (revolutionary) pinout.

Cypress Semiconductor Corporation Document #: 001-06496 Rev. *A 198 Champion Court •

San Jose, CA 95134-1709 • 408-943-2600 Revised August 31, 2006

V_{CC}

5V ± 0.5

Selection Guide

		-15	-20	Unit				
Maximum Access Time		15	20	ns mA				
Maximum Operating Current	Commercial	190	170	mA				
	Industrial	210	190					
	Automotive-A		190					
Maximum CMOS Standby Current	Commercial	3	3	mA				
	Commercial L	0.5	0.5					
	Industrial	6	6					
	Automotive-A		6					

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines. not tested.)

DC Input Voltage^[1] –0.5V to V_{CC} + 0.5V Current into Outputs (LOW)...... 20 mA

> Ambient Temperature^[2]

0°C to +70°C

-40°C to +85°C

-40°C to +85°C

Operating Range

Range

Commercial Industrial

Automotive-A

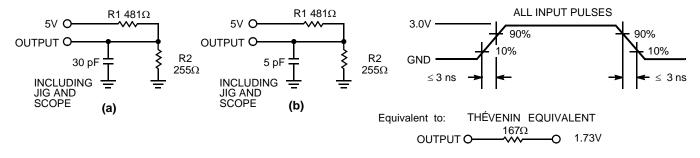
Storage	Temperature	–65°C to +150°C
	t Temperature with	
Power A	Applied	–55°C to +125°C
Supply V	Voltage on V _{CC} to Relative G	SND ^[1] –0.5V to +7.0V
DC Volta	age Applied to Outputs	
in High 2	age Applied to Outputs Z State ^[1]	–0.5V to V _{CC} + 0.5V

Electrical Characteristics Over the Operating Range

					-15	-20		
Parameter	Description	Test Condition	Min.	Max.	Min.	Max.	Unit	
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} = -4.0 mA		2.4		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 mA			0.4		0.4	V
V _{IH}	Input HIGH Voltage			2.2	V _{CC} +0.5	2.2	V _{CC} + 0.5	V
V _{IL}	Input LOW Voltage ^[1]		-0.5	0.8	-0.5	0.8	V	
I _{IX}	Input Load Current	$GND \leq V_I \leq V_{CC}$		-1	+1	-1	+1	mA
I _{OZ}	Output Leakage Current	GND <u><</u> V _{OUT} ≤ V _{CC} , Output	Disabled	-1	+1	-1	+1	mA
I _{CC} V _{CC} Opera	V _{CC} Operating Supply	$V_{CC} = Max.,$ f = f _{MAX} = 1/t _{RC}	Comm'l		190		170	mA
	Current		Ind'l		210		190	mA
			Auto-A				190	mA
I _{SB1}	Automatic CE Power-Down Current—TTL Inputs	$\begin{array}{l} \text{Max. } V_{CC}, \ \overline{CE} \geq V_{IH}, \ V_{IN} \geq V \\ V_{IN} \leq V_{IL}, \ f = f_{MAX} \end{array}$	/ _{IH} or		40		40	mA
I _{SB2} Automatic CE Power-Down Current		Max. V_{CC} , $\overline{CE} \ge V_{CC} - 0.3V$,	Comm'l		3		3	mA
	Power-Down Current —CMOS Inputs	$V_{IN} \ge V_{CC} - 0.3V$, or $V_{IN} \le 0.3V$, f = 0	Comm'l L		0.5		0.5	mA
			Ind'l		6		6	mA
			Auto-A				6	mA

Notes:

1. V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.


T_A is the case temperature.
 Tested initially and after any design or process changes that may affect these parameters.

Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 MHz,$	8	pF
C _{OUT}	I/O Capacitance	$V_{CC} = 5.0V$	8	pF

AC Test Loads and Waveforms

Switching Characteristics^[4] Over the Operating Range

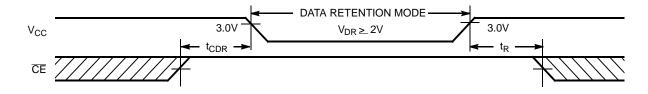
		-	15	-:			
Parameter	Description	Description Min.		Min.	Max.	Unit	
Read Cycle	•	•		•			
t _{power}	V _{CC} (typical) to the First Access ^[5]	1		1		μS	
t _{RC}	Read Cycle Time	15		20		ns	
t _{AA}	Address to Data Valid		15		20	ns	
t _{OHA}	Data Hold from Address Change	3		3		ns	
t _{ACE} CE LOW to Data Valid			15		20	ns	
t _{DOE}	OE LOW to Data Valid		7		8	ns	
t _{LZOE}	OE LOW to Low Z	0		0		ns	
t _{HZOE}	OE HIGH to High Z ^[6, 7]		7		8	ns	
t _{LZCE}	CE LOW to Low Z ^[7]	3		3		ns	
t _{HZCE}	CE HIGH to High Z ^[6, 7]		7		8	ns	
t _{PU}	CE LOW to Power-Up	0		0		ns	
t _{PD} CE HIGH to Power-Down			15		20	ns	
t _{DBE}	Byte Enable to Data Valid		7		8	ns	
t _{LZBE}	Byte Enable to Low Z	0		0		ns	
t _{HZBE}	Byte Disable to High Z		7		8	ns	

Notes:

4. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified l_{OL}/l_{OH} and 30-pF load capacitance.
 5. This part has a voltage regulator which steps down the voltage from 5V to 3.3V internally. t_{power} time has to be provided initially before a read/write operation is a totated.

started.

6. t_{HZOE} , t_{HZCE} , and t_{HZWE} are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage. 7. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZOE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZWE} for any given device.

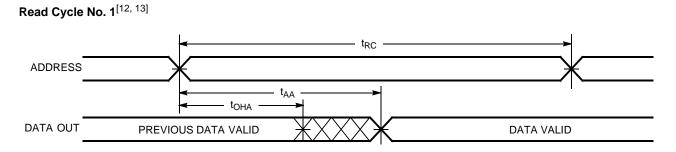

Switching Characteristics^[4] Over the Operating Range (continued)

		-	-15				
Parameter	Description	Description Min. Max		Min.	Max.	Unit	
Write Cycle ^[8, 9]	•			1			
t _{WC}	Write Cycle Time	15		20		ns	
t _{SCE}	CE LOW to Write End	12		13		ns	
t _{AW}	Address Set-Up to Write End	12		13		ns	
t _{HA}	Address Hold from Write End	0		0		ns	
t _{SA}	A Address Set-Up to Write Start			0		ns	
t _{PWE}	WE Pulse Width	12		13		ns	
t _{SD}	Data Set-Up to Write End	8		9		ns	
t _{HD} Data Hold from Write End		0		0		ns	
t _{LZWE} WE HIGH to Low Z ^[7]		3		3		ns	
t _{HZWE}	WE LOW to High Z ^[6, 7]		7		8	ns	
t _{BW}	Byte Enable to End of Write	12		13		ns	

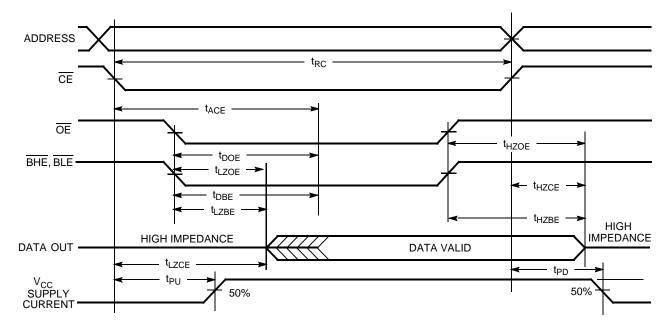
Data Retention Characteristics Over the Operating Range (L version only)

Parameter	Description	Conditions ^[11]	Min.	Max.	Unit
V _{DR}	V _{CC} for Data Retention		2.0		V
I _{CCDR}	Data Retention Current	$\underline{V_{CC}} = V_{DR} = 2.0V,$		200	μΑ
t _{CDR} ^[3]	Chip Deselect to Data Retention Time	$\overrightarrow{CE} \ge V_{CC} - 0.3V$, $V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$	0		ns
t _R ^[10]	Operation Recovery Time		t _{RC}		ns

Data Retention Waveform

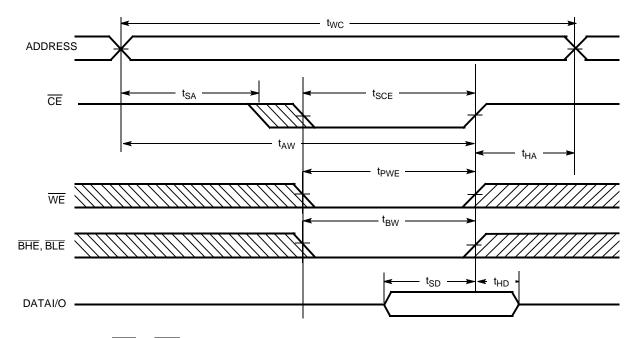


Notes:

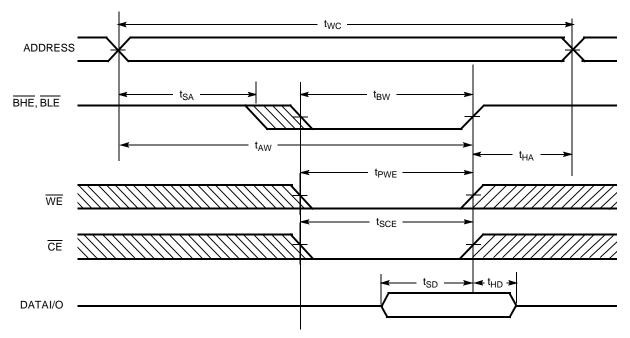

- 8. The internal write time of the memory is defined by the overlap of \overline{CE} LOW, and \overline{WE} LOW. \overline{CE} and \overline{WE} must be LOW to initiate a write, and the transition of either of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write. 9. The minimum write cycle time for Write Cycle no. 3 (WE controlled, \overline{OE} LOW) is the sum of t_{HZWE} and t_{SD} . 10. $t_r \le 3$ ns for the -15 speed. $t_r \le 5$ ns for the -20 and slower speeds. 11. No input may exceed V_{CC} + 0.5V.

Switching Waveforms

Read Cycle No. 2 (OE Controlled)^[13, 14]


Notes:

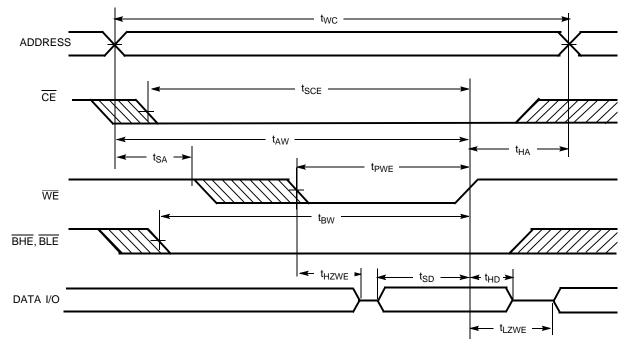
- 12. Device is continuously selected. \overline{OE} , \overline{CE} , \overline{BHE} , and/or $\overline{BHE} = V_{IL}$. 13. WE is HIGH for read cycle.
- 14. Address valid prior to or coincident with \overline{CE} transition LOW.



Switching Waveforms (continued)

Write Cycle No. 1 (CE Controlled)^[15, 16]

Write Cycle No. 2 (BLE or BHE Controlled)


Notes:

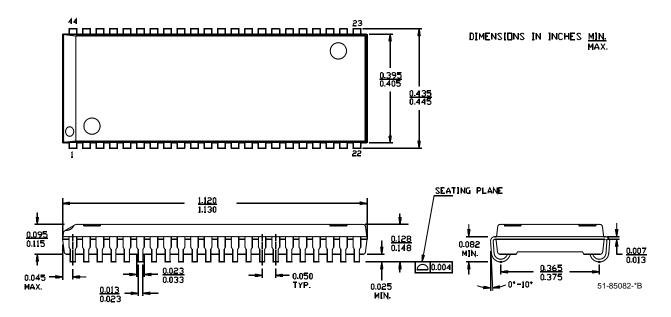
15. Data I/O is high impedance if OE or BHE and/or BLE = V_{IH}.
16. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)

Write Cycle No. 3 (WE Controlled, OE LOW)

Truth Table

CE	OE	WE	BLE	BHE	1/0 ₀ –1/0 ₇	I/O ₈ –I/O ₁₅	Mode	Power
Н	Х	Х	Х	Х	High Z	High Z	Power Down	Standby (I _{SB})
L	L	Н	L	L	Data Out	Data Out	Read All bits	Active (I _{CC})
L	L	Н	L	Н	Data Out	High Z	Read Lower bits only	Active (I _{CC})
L	L	Н	Н	L	High Z	Data Out	Read Upper bits only	Active (I _{CC})
L	Х	L	L	L	Data In	Data In	Write All bits	Active (I _{CC})
L	Х	L	L	Н	Data In	High Z	Write Lower bits only	Active (I _{CC})
L	Х	L	Н	L	High Z	Data In	Write Upper bits only	Active (I _{CC})
L	Н	Н	Х	Х	High Z	High Z	Selected, Outputs Disabled	Active (I _{CC})


Ordering Information

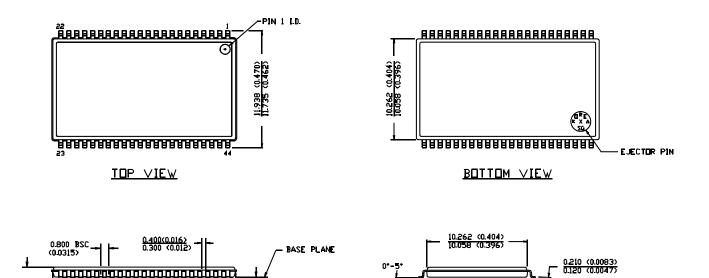
Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C1041BN-15VC	51-85082	44-pin (400-Mil) Molded SOJ	Commercial
	CY7C1041BN-15VXC		44-pin (400-Mil) Molded SOJ (Pb-free)	
	CY7C1041BN-15ZC	51-85087	44-pin TSOP Type II	
	CY7C1041BN-15ZXC		44-pin TSOP Type II (Pb-free)	
	CY7C1041BNL-15ZC		44-pin TSOP Type II	
	CY7C1041BNL-15ZXC		44-pin TSOP Type II (Pb-free)	
	CY7C1041BN-15ZI		44-pin TSOP Type II	Industrial
	CY7C1041BN-15ZXI		44-pin TSOP Type II (Pb-free)	
	CY7C1041BN-15VI	51-85082	44-pin (400-Mil) Molded SOJ	
	CY7C1041BN-15VXI		44-pin (400-Mil) Molded SOJ (Pb-free)	
20	CY7C1041BN-20VXC		44-pin (400-Mil) Molded SOJ (Pb-free)	Commercial
	CY7C1041BNL-20VXC		44-pin (400-Mil) Molded SOJ (Pb-free)	
	CY7C1041BN-20ZC	51-85087	44-pin TSOP Type II	
	CY7C1041BN-20ZXC		44-pin TSOP Type II (Pb-free)	
	CY7C1041BN-20ZI		44-pin TSOP Type II	Industrial
	CY7C1041BN-20ZXI	1	44-pin TSOP Type II (Pb-free)	
	CY7C1041BN-20VXI	51-85082	44-pin (400-Mil) Molded SOJ (Pb-free)	
	CY7C1041BN-20ZSXA	51-85087	44-pin TSOP Type II	Automotive-A

Please contact local sales representative regarding availability of these parts.

Package Diagrams

44-pin (400-Mil) Molded SOJ (51-85082)

51-85087-*A


Package Diagrams (continued)

18.517 (0.729) 18.313 (0.721)

(0.047) (0.039)

DIMENSION IN MM (INCH) NAX N(N.

0.597 (0.0235)

All products and company names mentioned in this document may be the trademarks of their respective holders.

SEATING

(02000)

© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress all risk of such use and in doing so indemnifies Cypress against all charges.

Document History Page

Document Title: CY7C1041BN 256K x 16 Static RAM Document Number: 001-06496					
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change	
**	424111	See ECN	NXR	New Data Sheets	
*A	498575	See ECN	NXR	Added Automotive-A operating range updated Ordering Information Table	